GNNS FOR TRACKING

Savannah Thais (on behalf of many others) CMS ML Forum 09/30/2020

Outline

- 1. Introduction to tracking with GNNs
- 2. Edge classifiers
- 3. Data processing
- 4. New architectures + studies

'Traditional' Tracking with GNNs

Basic procedure

- Form initial graph from spacepoints/hits (pre-processing)
- 2. Process with GNN to get probabilities of all edges
- Apply post-processing algorithm to link edges together into tracks and get parameters

Many places to improve/innovate

- Graph construction, architectures, data augmentation...
- Most work shown here uses
 <u>TrackML dataset</u>
 - Open, experiment agnostic
 - Has 'score' functionality to compare models

Edge Classifiers

- Graph Modules are core component:
 - Run <u>node</u> and <u>edge</u> convolutions
 - Update features of both
 - Each message passing function is a
 FCN
- Graph modules are often recursively connected
 - Allows aggregation of progressively more distant information
 - Weights can be shared across modules

Proof of Principle

NeurIPS 2020 ExaTrkX architecture:

- Node and edge features embedded in latent space
- 8 graph modules with shared weights
- Initial embeddings concatenated at each module
- Each FCN has 128 hidden features and ReLU activation

Results:

- 95.9% edge efficiency
- ~95% track finding accuracy

Paper

Interaction Networks

Applies relational and object models in stages to infer abstract interactions and object dynamics

- Relation and object models are FCNs
- Total of 89,400 parameters (smaller than previous architecture)

Results:

- 95% edge efficiency
- Tracking efficiency still being measured

Paper, Recent Talk

Embedding

Improve graph efficiency by embedding features

- Embed features in N-dimensional space where hits from same tracks are close to each other
- Score "target" hit within embedding neighborhood against "seed" hit at center
- Filter by score to create seed-to-target doublets, doublets form the graph
- Can repeat with embedding triplets as edges, creating 'n-plet' graphs

Graph Construction

Optimizing graph construction can help GNNs learn effectively

- Edge efficiency: true edges/all edges
- Truth efficiency: true edges in graph/all possible true edges

'Current' Methods

- Layer pairs: create edges between nodes in adjacent layers within a $\Delta \phi / \Delta r$ range
- Layer pairs+: allow edges within a layer
- kNN: form edges between a hit and its k closest neighbors (can customize distance metric)

Exploratory Methods

- Dynamic kNN
- Learned clustering
- DBScan in eta-phi space

Data Augmentation

- Including endcaps:
 - Difficult in layer pairs construction due to edge ordering
 - Initial studies in pixel detector only, typically improve edge efficiency
- Dropping layers from graph construction
 - Reduce size of graph while maintaining track finding efficiency
- Applying z and phi reflections
 - Break symmetry of detector to possibly enhance learning

Pixel IN with Endcaps

On-going Studies

- Optimize parameters of existing graph construction algorithms and explore new ones
- Refine track formation algorithm (currently Union Find or DBScan)
- Improve existing architectures
 - Include external effects in IN, optimize embedding...
- Test other GNN architectures
 - Instance segmentation, GraphSAGE, Spectral Convolutions...
- Additional data augmentation
 - Endcaps for full detector, other transforms...
- New ideas
 - Timing information, one-shot tracking, conformal space...

One-Shot Clustering Network

Form graphs, cluster hits, and fit tracks with one algorithm

- DGCNN-based embedding (hinge loss to truth centers in latent space)
- Edge classifier in latent space (cross-entropy binary loss)
- Union-find over edges to form clusters, predict track properties (pt, eta, ph) from clusters (MSE loss)

Recent Talk

Initial study on 10 events with 200 tracks each

- Track efficiency measurement using maximum IoU
- Fake rate ~20%, truth efficiency ~90%

Accelerated GNN Tracking

Strong interest in accelerating these algorithms with GPUs or FPGAs

- <u>HLS4ML</u> implemented a 1 iteration version of IN for FPGA
- Princeton group optimizing OpenCL IN on FPGA
- Lindsey Gray implemented <u>Jit</u> functionality for Pytorch geometric

Latency (cycles)		Latency (absolute)		Initiation Interval (cycles)		
min max		min max		min max		
377	377	2.226 us	2.226 us	46	46	

== Utilization Estimates										
* Summary:										
++										
Name	BRAM_18K	DSP48E	FF	LUT	URAM					
+	+4				+					
DSP	-	-	-	-	-					
Expression	-	-	0	2442	-					
FIFO	321	-	9350	25516	-					
Instance	46	143	177007	826482	-					
Memory	-	-	-	-	-					
Multiplexer	-	-	-	5418	-					
Register	-	-	604	-	-					
+	+4	+			+					
Total	367	143	186961	859858	0					
+	+4	+			++					
Available SLR	2160	2760	663360	331680	0					
+	+4	+			+					
Utilization SLR (%)	16	5	28	259	100					
+	+4	+			++					
Available	4320	5520	1326720	663360	0					
+	++	+	+		++					
Utilization (%)	8	2	14	129	0					
+	+4	+			++					

Recent HLS4ML Talk

Conclusions

- GNNs are extremely promising for LHC tracking
 - Geometric data representation with variable number of inputs
- A variety of architectures have been shown to work
 - Focus is now on refining and optimizing
- Graph construction (and embedding) is critical to performance
- Working towards accelerating graph algorithms for use at HL-LHC
 - Possibly at trigger level