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1 Introduction

The CMS experiment [1] at the Large Hadron Collider (LHC) is exploring the frontier of particle
physics with highest energy proton-proton collisions ever recorded in the laboratory. The University
of Alabama (UA) has been a member institution of the CMS Collaboration since 2011. The UA CMS
group is led by faculty members: Sergei Gleyzer and Paolo Rumerio. In 2021, Professor Gleyzer
supervised a postdoctoral researcher, Dr. Davide di Croce, on a US-CMS HL-LHC Software and
Computing R&D project titled: "Accelerating Deep Learning Reconstruction for CMS". The focus of
this project was on integrating innovative machine learning algorithms into detector reconstruction,
while leveraging heterogeneous computing architectures. As Dr. DiCroce recently accepted a more
senior position, Professor Gleyzer is currently filling a new position for a postdoctoral researcher
with the anticipated starting date of June 2022. The focus of this new position will be on machine
learning applications for physics analysis, detector reconstruction and Phase-II upgrades, with a
strong emphasis on computational and innovative machine learning aspects of this research. The
candidate, supervised by Dr. Gleyzer, will be based at the LPC and make significant contributions
to US CMS machine learning operations.

The proposed research program for the postdoctoral researcher, focused on integration of ma-
chine learning and hardware acceleration into CMS reconstruction, is closely aligned with the vision
and priorities of the CMS Machine Learning group. It closely ties to US-CMS Software and Com-
puting Operations and R&D efforts in the area of heterogeneous computing resources, detector
reconstruction and analysis facilities and tools. The PI will enable additional support for the pro-
posed research program at the LPC, through collaboration with existing synergistic LPC machine
learning efforts and with the broader CMS Machine Learning community. In this proposal, we
extend the original project to additional machine learning reconstruction targets, including appli-
cations of graph neural networks and vision transformers for end-to-end tau and electron
reconstruction, merged photon and tau mass regression, and further integration of machine learning
and hardware acceleration into CMSSW using containerization. Detailed research plans are de-
scribed in Sections §2 - §4. Sections §2.1 - §3 describe the results obtained in 2021 and the planned
timeline and deliverables are discussed in Sections §4.

2 Machine Learning for New Physics at the LHC and HL-LHC

Our ability to take full advantage of machine learning during HL-LHC crucially depends on deep
integration of information from various available sources and implementation of powerful algo-
rithms that best exploit highly-dimensional and highly-granular data. Despite rapid advances, sig-
nificant challenges still remain for large-scale application of deep-learning algorithms beyond the
present state of the art. These challenges include model complexity and latency at inference time,
integration of deep learning algorithms in detector reconstruction and simulation, the
non-euclidean nature of some input data and irregular geometry posing challenges to direct applica-
tion of computer vision-inspired algorithms to full detector data. These challenges and the program
to address them are described in detail in the Community White Paper for Machine Learning in
High-Energy Physics [2], co-edited by PI Gleyzer.
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The LHC will enter its ‘High-Luminosity’ (HL-LHC) phase in 2029. The center-of-mass energy
will be 14 TeV and instantaneous luminosity is projected to reach a peak of up to 7.5×1034 cm−2s−1,
a factor of four increase beyond Run 2. The goal of HL-LHC is to collect an integrated luminosity
of at least 3000 fb−1 in ten years of operations [3]. At HL-LHC, the number of pileup collisions is
expected to reach 200, a significant increase above the Run 2 mean of ∼ 40. To handle this challenge,
and to cope with the high radiation environment, the CMS experiment is preparing major detector
upgrades for HL-LHC [4]. One of the key HL-LHC challenges is how to best take advantage of
these new detectors and additional advantages offered by their expanded granularity, sensitivity
and timing resolution to enhance the physics reach and potential of the CMS experiment.

2.1 End-to-end Deep Learning for LHC and HL-LHC

For the past decade, the CMS experiment uses particle flow (PF) algorithms to reconstruct the
LHC collision events [5]. The CMS PF algorithm attempts to reconstruct all stable particles in
an event including muons, electrons, photons and hadrons and uses that information to build jets.
The algorithm combines information from all CMS subdetectors to construct PF candidates
from overlapping tracks and calorimeter clusters. Currently, particle flow candidates are used as
input for many machine learning applications at the LHC [6–8]. Alternatively, and crucially
for future progress, machine learning algorithms can be directly applied to low-level data to
improve the performance of particle flow algorithms, leading to a possible next-generation LHC and
HL-LHC reconstruction, enhanced by machine learning techniques.

PI Gleyzer leads the development of a novel deep learning reconstruction technique suitable for
LHC and HL-LHC - end-to-end deep learning (E2E) [9–17]. End-to-end deep learning leverages a
combination of deep learning and low-level detector representation to efficiently identify particles and
perform event-level reconstruction. This approach has achieved current state-of-the-art performance
in identifying electrons, photons, jets and boosted objects [9–12] and has been effectively applied in
physics analysis [13,14]. End-to-end deep learning takes advantage of various deep learning architec-
tures including convolutional neural networks such as ResNet [18], and graph neural networks that
show excellent scalability and generalization to particle identification tasks [9, 20–22,27]. Recently,
PI Gleyzer has developed graph neural network applications for CMS Phase 2 reconstruction
and end-to-end deep learning reconstruction and simulation [20–22]. Additional end-to-end devel-
opments include incorporation of low-level tracking information for improved jet and boosted jet
identification, muon and tau identification, mass regression and event-level anomaly detection. Be-
yond standalone particle and event identification tasks, end-to-end deep learning forms the basis
of the first end-to-end deep learning-based CMS search for light pseudoscalar decays of the
Higgs boson into four photons [13], a physics analysis that demonstrates the ability of innovative
end-to-end deep learning algorithms to push the experimental sensitivity in challenging recon-
struction conditions such as fully-merged particles. This innovative physics result based on the
E2E deep learning technique, including a novel application of end-to-end mass regression [14] paves
the way for a whole family of analyses that can take full advantage of end-to-end deep learning in
areas where traditional reconstruction is limited. Machine learning algorithms developed as part of
the E2E project have additional applications to novel physics searches and advanced data quality
monitoring applications, that the E2E group plans to expand on during 2022.

The end-to-end deep learning project has evolved into a major (US) CMS machine learning
effort led by University of Alabama, with participating US institutions: University of Alabama,
Carnegie Mellon and Brown. PI Gleyzer leads the overall E2E project, its algorithmic devel-
opment and applications to reconstruction and physics analysis, including e/γ and tau identification,
anomaly detection, trigger applications and BSM physics searches in boosted topologies.

2



3 Accelerating Deep Learning Reconstruction in CMS

One of the key steps in integrating machine learning algorithms into CMS reconstruction
is integration of promising particle identification algorithms such as end-to-end deep learning into
the CMS Software Framework. The UA group has focused on the integration of the end-to-end
framework into CMSSW and the inference and scaling performance of the end-to-end algorithm
described in Section §2.1. One important aspect of this work is the understanding and optimization
of inference time of the E2E algorithm and its scaling with the use of heterogeneous computing
and hardware acceleration devices, such as GPUs and FPGAs.

Figure 1: (a) A 6-channel composited end-to-end image of a simulated top quark jet. (b) Outline
of the E2E pipeline for classification

During the previous US-CMS SC R&D project, three distinct E2E benchmarks were developed:
e/gamma classifier using information from the ECAL subdetector, quark-gluon classifier that relies
on ECAL, HCAL and track pT information, and a top jet classifier that uses hits from barrel pixel
layers, track pT , ECAL, and HCAL information (Figure 1a). All three end-to-end classifiers use
ResNet CNNs. In another phase of the project, we developed the first end-to-end tau classi-
fication benchmark and an end-to-end graph neural network classifier for top and tau jets
(Figure 2).

Figure 2: E2E Graph Neural Network
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Table 1: E2E Tau Classification with Convolutional and Graph Neural Networks

E2E Layer Combination AUC(CNN) AUC(GraphNN)
Track Pt+d0+dz 0.776 0.864
Track Pt+d0+dz+ECAL+HCAL 0.798 0.870
Track Pt+d0+dz+ECAL+HCAL+BPIX+TIB/TOB1-2 0.864 0.887

As can be seen in Table 1, newly developed E2E graph neural network architectures perform
very well on the tau classification task for all layer combinations, and show improvements with
inclusion of additional layer information. We plan to add more input information and enhance and
further customize the models for the low momentum regime.

In another part of the project, we integrated the E2E framework on top of CMSSW base classes,
with a highly modular design to support customizable E2E workflows to support ML training and
inference [15]. The current version can handle fully connected, convolutional and graph neural
network architectures, while future versions will use other models as well. The framework consists
of three main package categories: DataFormats, FrameProducers, and Taggers, as shown in Figure
1b. The DataFormats package consists of all the objects and classes needed for running the E2E
modules and for storing any output back into EDM-format files.

Figure 3: (a) Comparison of training time for different E2E benchmarks. (b) Scaling multi-GPU
training for the standalone boosted top jet benchmark. (c) Comparison of the inference time for
electron/photon and quark/gluon benchmarks using CPU and GPU architectures within CMSSW.

We also trained the E2E benchmarks on CPUs and GPUs, as shown in Figure 3a. We leveraged
the Nvidia Horovod framework to train E2E benchmarks on multiple GPUs and studied its scaling
performance. With this procedure different layers of the deep learning model are trained on different
devices, taking advantage of the inter-GPU and inter-node communication methods such as NCCL
and MPI to distribute the deep learning model parameters between various workers and aggregate
them. Our results show good scaling performance (Fig. 3b.). Finally, with the CMSSW TensorFlow
C++ API, we performed inference on CPU and GPU architectures within CMSSW (Figure 3.c).

The end-to-end deep learning application is an excellent test case for machine learning inte-
gration as it uses state-of-the-art machine learning algorithms and significant input space and data
complexity. The postdoctoral associate can additionally focus on the graph neural network HGCAL
reconstruction algorithm developed by the PI. This prioritization can be discussed before the project
begins. Longer-term vision includes integrating end-to-end graph neural networks and transformer
architectures for HGCAL reconstruction, due to their natural ability to incorporate irregular HG-
CAL geometry and timing inputs for a deep spatio-temporal combination with the eye towards
addressing Phase-2 HL-LHC reconstruction challenges.
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4 Research Agenda: Timeline and Milestones

Leveraging the state-of-the-art jet and tau identification results achieved by the end-to-end deep
learning algorithm that exploits low-level tracking [10–12], we propose to further extend and cus-
tomize the E2E algorithm to electron and tau identification for the full momentum range
in 2022. The goal of this work is to significantly improve identification of electrons and
taus in the low momentum regime. Present deep learning techniques used for tau identification
are used more traditionally with combinations of hand-selected high-level features and particle flow
inputs. The end-to-end approach uses full detector information and deep learning algorithms ap-
plied at a much earlier reconstruction stage, and can potentially recover information losses in tau
reconstruction. This advantage should be even more apparent in the low-momentum regime.

• Specific Reconstruction Aim 1. Extend the end-to-end deep learning reconstruction
to electron and tau identification in 2022 with a focus on the low momentum regime. Integrate
the electron and tau benchmarks into CMSSW E2E prototype and perform scaling studies for
training and inference on heterogeneous hardware platforms relying on containerization.

Graph neural networks provide a natural representation for encoding relational information
of physical systems. Proposed by Scarcelli [23] and further developed to learn across graph nodes
and edges [24], graph representation learning can handle irregular grids with non-Euclidean geome-
try [25], encode physics knowledge via graph construction [26] and introduce relational inductive bias
into data-driven learning systems [27]. Graph representation learning has shown early promise
for LHC applications and elsewhere [7, 19, 28–30]. As Table 1 shows, progress obtained with graph
models highlights the potential of end-to-end deep learning algorithms with graph neu-
ral networks for improving LHC reconstruction with upgraded CMS detectors. Additionally, PI
Gleyzer has recently developed end-to-end graph generative and attention models to successfully
learn end-to-end detector representation with graph models [19–22]. We propose to additionally
develop transformer-based models for computer vision (vision transformers [31]) and graph trans-
former [32] architectures and evaluate their performance on newly established benchmarks.

• Specific Reconstruction Aim 2. Further extend the end-to-end deep learning tau re-
construction with graph neural networks and vision and graph transformers for combination
of low-level tracker and calorimeter inputs and integrate them into CMSSW. Additionally, ex-
tend to E2E regression tasks. Perform inference and training scaling tests with heterogeneous
hardware relying on containerization.

The end-to-end deep learning application is an excellent test case for machine learning integra-
tion as it uses state-of-the-art machine learning algorithms and significant input space and data
complexity. We will continue to build upon E2E CMSSW integration in 2022 by incorporating
new reconstruction targets including mass regression, as in recent E2E analyses [13,14] and
make it flexible enough to handle graph inputs at training and inference stage. Tau reconstruc-
tion offers an excellent benchmark to study both training and inference of deep learning models
within CMSSW. We will leverage containerization as we work towards CMSSW GPU inference
and continue expanding deep learning with E2E benchmarks on heterogeneous hardware, with a
greater focus on inference and additional hardware architectures (FPGAs). As part of project we
will also use and evaluate the new Fermilab elastic analysis cluster facility. This project will provide
useful feedback and a realistic test of the cluster capabilities and limitations for CMS ML needs.
Longer-term vision includes integrating end-to-end graph neural networks for HGCAL tau recon-
struction, due to their natural ability to incorporate irregular HGCAL geometry and timing inputs
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for a deep spatio-temporal combination with the eye towards addressing further Phase-2 HL-LHC
reconstruction challenges with end-to-end deep learning.

Period Deliverables
8/22-10/22 Develop standalone E2E CNN e benchmark (BM) on single CPU and GPU

Develop single-GPU inference on E2E CNN e BM
Develop vision transformer (VIT) application for E2E τ BMs

11/21-1/22 Extend graph neural network (GNN) application for E2E τ BMs
Perform scaling multi-GPU studies on standalone e BMs
Develop vision transformer (VIT) application for E2E e BMs

2/22-4/22 Develop single-GPU inference on E2E VIT e BM within CMSSW
Develop E2E mass regression BM
Integrate E2E VIT e and τ BMs into CMSSW
Benchmark E2E VIT/GNN e and τ CPU inference within CMSSW

5/22-8/22 Integrate E2E mass regression into CMSSW
Develop CMSSW multi-GPU inference on E2E VIT/G(T)NN e and τ BMs
Study E2E e and τ inference within CMSSW on GPU and FPGA

Milestones:

• Q3 2022. Single CPU/GPU inference and classification performance of standalone E2E e
benchmark (BM).

• Q4 2022. GNN application for E2E on the τ BM. Multi-GPU training and inference of
standalone E2E e BM. VIT application for E2E on the e BM.

• Q1 2023. Inference of E2E VIT e and τ BM. Inference of E2E GNN τ BM within CMSSW.
E2E mass regression application BM. Benchmarking and performance plots of CPU inference
on E2E VIT/GNN e and τ BM within CMSSW.

• Q2 2023. Benchmarking and performance plots of single-GPU and FPGA inference on E2E
VIT/GNN τ BM within CMSSW. Full integration of E2E mass regression in CMSSW. Multi-
GPU inference on E2E VIT/GNN e and τ BM within CMSSW.

Project Synergy within US-CMS and CMS Machine Learning Group. The proposed
research program is closely aligned with the vision and priorities of the CMS ML group. PI Gleyzer
will foster involvement of other interested CMS groups in this key machine learning reconstruction
activity, with University of Alabama providing a key push. The proposed project is also closely
aligned with US-CMS Software and Computing Operations and R&D efforts in the area of hetero-
geneous computing resources, detector reconstruction and analysis facilities and tools. The PI will
enable additional support for the proposed research program at the LPC, through collaboration
with existing synergistic LPC machine learning efforts and with the broader CMS Machine Learn-
ing community. PI Gleyzer taught a graduate ML course at the LPC, training a number of PhD
students who can potentially further contribute to the machine learning reconstruction effort.

In addition to the postdoctoral researcher, UA CMS group can commit additional resources:
PhD students Ana Maria Slivar, Colin Crovella and Bhim Bam to this long-term broad machine
learning reconstruction integration effort. Due to the maturity of the E2E effort and its relevance
to CMS Machine Learning group activities, we foresee that the project will have a strong support
structure to ensure long-term project success both in 2022-2023 and beyond.

6



5 Summary

In summary, we propose to work on integrating end-to-end deep learning algorithms into CMS
reconstruction, including graph neural networks and vision and graph transformers, with a focus on
accelerating deep learning-enabled reconstruction algorithms for LHC Run 3 and HL-LHC, enabled
by heterogeneous computing.
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