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Introduction

The CMS detector simulation, which uses Geant4, consumed 40% of grid CPU at the
beginning of Run 2 [1], even including various technical optimizations and physics-preserving
approximations that improve its efficiency by a factor of 4–6 compared to the default [2].
In the HL-LHC era, the CPU time to simulate an event will increase by a factor of 3 or
more [3, 4], because of the more complex detector geometry and the more detailed physics
models needed to reproduce the precise measurements of the upgraded detector. The high
level of physical accuracy in modern detector simulations is a crucial ingredient in high energy
physics research, and its importance should not be understated. Statistical uncertainty
arising from the limited sizes of simulated signal and background samples already poses a
significant challenge for many analyses. CMS needs an accurate simulation with decreased
CPU usage to match the growing LHC datasets, and there is a relatively small amount of
serious R&D in this area compared to topics such as reconstruction. The PI previously led
the CMS integration of the GeantV prototype [3], which concluded that the achievable
speedup in classical, rule-based, CPU-bound simulation engines was too limited [5].

Artificial intelligence (AI) and machine learning (ML) are promising avenues to solve this
problem. In particular, ML algorithm inference can be massively accelerated using coproces-
sors, such as GPUs—including those available from HPCs—and FPGAs. This functionality
is already available in the CMS software via SONIC (Services for Optimized Network In-
ference on Coprocessors) [6–8], for which the PI is the lead developer. The PI has been
L3 convener of the CMS ML4Sim (machine learning for simulation) group since 2020. The
PI has also served as co-convener of the Detector Simulation working group in the HEP
Software Foundation (HSF) and co-convener of the Theoretical Calculations and Simulation
Topical Group in the Snowmass Computing Frontier. In these roles, he gathered input from
and provided direction to the entire HEP community [9–12] and organizes the CMS efforts.

This proposal follows an earlier proposal, for which the PI was awarded support for 0.5
FTE-year of postdoc effort. There, we proposed to use ML denoising to enhance fast, low-
quality simulation output, producing an improved final result. Strong results from a first
prototype were obtained and will be summarized below. Oz Amram was hired to deliver the
results outlined in the proposal milestones; he started in September 2022 with substantial
ML expertise, including a leading entry [5] in the LHC Olympics [13]. The lessons learned
from the prototype and the timing of Oz’s arrival motivated a shift in the project’s direction
to use cutting-edge diffusion architectures from industry image generation. We have achieved
impressive initial success with diffusion, and we will continue this approach in the second
year, applying it to the CMS FastSim and High Granularity Calorimeter (HGCal).

Previous Work

Denoising, related to inpainting and super-resolution techniques, has been used in indus-
try to reduce the need for expensive Monte Carlo ray-tracing in computer animation [14].
Generative adversarial networks (GANs) have been the most commonly explored option in
ML for detector simulation, even deployed in production at ATLAS [15] and LHCb [16].
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However, their reliability is ultimately limited by insurmountable mathematical difficulties:
their training is not guaranteed to converge, they may suffer from mode collapse and van-
ishing gradients, and the validity of extrapolation beyond the training dataset is unclear.
Instead, starting from the basic knowledge of particle showers encoded in fast simulations
and enhancing the output with ML may provide an easier and more reliable solution. The
initial proposal to use denoising for this purpose had four elements:

1. Determine parameter modifications to use Geant4 as a lower-quality fast simulation;
2. Generate particle shower training data;
3. Design and train the denoising algorithm;
4. Implement the final product in the CMS software using SONIC.

Given the long timescales (here, 16 months) involved in hiring a postdoc with the requi-
site expertise to deliver a novel AI application, the PI proceeded to work on the first three
elements, largely in parallel, with available effort from undergraduate interns and master’s
students. Some preliminary results were already included in the first proposal: on element 1,
modifying the Geant4 production cut was shown to reduce the computing time by a factor
of two; and on element 3, a convolutional neural network (CNN) successfully denoised 2D
shower images with noise artificially added. Since then, elements 1–3 were completed. Mod-
ifications to other Geant4 parameters (element 1), including Russian Roulette [17] energy
thresholds for neutrons and photons and the energy threshold to use simplified chord-finding
magnetic field propagation, were found to reduce the computing time by 4–7% each. At
the same time, photon showers in the CMS ECAL were generated with a modified pro-
duction cut as training data (element 2). Finally, the denoising algorithm was trained and
optimized, including data preprocessing and architecture modifications, and the results for
various shower-related variables were assessed using ensemble comparisons and an event-
by-event concordance correlation metric. Figure 1 shows selected results; in particular, the
observed agreement in per-pixel energy down to 0.1MeV is difficult for even very compli-
cated GAN architectures to achieve without extensive postprocessing. Though integration
into CMSSW via SONIC has not yet been achieved, the inference speed of the CNN was
measured at 38 shower images per second on CPU and up to 8200 on an Nvidia P100 GPU,
orders of magnitude faster than Geant4. These results were published [18].

The premise of element 1, using a modified Geant4 as a fast simulation, was based on the
hypothesis that the additional information associated with each energy deposit by the full
simulation engine could be used as extra input features to improve the output of the denois-
ing CNN. Amram’s first task was to test this hypothesis; he examined features including
the time associated with each hit, the step length, and momentum differences, both as indi-
vidual features and combined in a custom deep set architecture to derive a new optimized
feature as an additional channel for each pixel input in the shower image. The deep set
approach produced minor gains in the concordance correlation scores, but otherwise the ad-
ditional information did not prove particularly useful. In addition, parameter modifications
to Geant4 could not produce a fast enough simulation to be viable for HL-LHC, without
in-depth changes such as rewriting physics lists. This early feedback was important to be
able to modify the approach while still utilizing the principle of denoising.

In August 2022, a company called Stability AI released their image generation algorithm,
Stable Diffusion, to the public, following on the heels of other new image generators such as
DALL·E 2, Imagen, and Midjourney. This new breed of generative ML produced results far
more detailed than previous algorithms. Notably, they all used variations of an architecture
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Figure 1: Left: comparison between the modified simulation, denoising CNN output, and
Geant4 for distributions of the per-pixel energy. Right: the per-image comparison of the
number of hits above threshold with the concordance correlation between Geant4 and the
others listed in parentheses.

called diffusion models [19], which had only just started to be explored in particle physics [20].
Diffusion is a sophisticated denoising process: small amounts of noise are repeatedly added
to an image, and a network is trained to remove this added noise. Once the training is
completed, new images can be generated by iteratively subtracting small amounts of noise
from random input until an image is generated. Learning this iterative process is more
effective than learning a one-shot transformation all the way to a fully denoised image.
Around the same time, the CaloChallenge [21] was announced, providing the first public,
standardized datasets for ML-based simulation. Starting with these relatively simple datasets
facilitated rapid iteration and improvements to the ML algorithm, described below, as well
as objective comparisons to other approaches using various metrics [22].

Amram had an operational diffusion network within 2 months, dubbed “CaloDiffusion”,
and competitive results only 1 month after that. The baseline model itself represents an
improvement over the previous denoising prototype, using a more sophisticated U-net ar-
chitecture with 3D convolutions. Improvements to the baseline architecture include prepro-
cessing, cylindrical convolutions that properly handle calorimeter geometries, conditioning
the convolutions on positional information, and optimizing the noise- and sampling-related
parameters. We also found denoising diffusion, which directly predicts the added noise in
the image, simpler and better performing than the score-based variant used in Ref. [20]. In
order to handle CaloChallenge Dataset 1, which mimics the ATLAS calorimeter’s irregular
geometry, we developed a learned, invertible embedding to convert it into a regular geometry
on which convolutions can be performed. Figure 2 shows the latest results, which have been
submitted to the CaloChallenge and presented at CHEP [23], and will be published soon.
These generated showers achieve excellent scores of 0.6–0.7 on the CaloChallenge metric,
the area under the curve for a classifier trained to distinguish between real and generated
showers (where 0.5 indicates complete indistinguishability), and perform similarly well in
other metrics such as the Fréchet particle distance [22].

Proposal

There are several immediate improvements that will be made to the existing CaloDiffusion
algorithm. The agreement in global quantities, such as total energy per shower, can be
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Figure 2: Comparisons of various physical quantities for CaloChallenge datasets 1 (left), 2
(middle), and 3 (right).

improved by adding an ensemble term to the loss function. CaloDiffusion inference, though
still faster than Geant4, is slower by default than other generative ML algorithms because
many iterations of the denoising process are needed to produce high quality output. We will
explore recent techniques such as consistency models [24] to distill the denoising operation
of the trained network, reducing the number of iterations needed while preserving quality
as measured by the metrics described above. In addition, the computational burden of each
denoising step can be reduced by denoising in a lower-dimensional latent space [25], an
approach we have already started to pursue. Latent diffusion may further help apply this
method to more complicated detector geometries.

So far, CaloDiffusion has been used in a fully generative mode, creating particle shower
output from random noise. However, as discussed in the previous proposal, denoising a low
quality shower from a fast simulation should be more reliable, by incorporating basic physical
knowledge of shower shapes. Given the conclusion of element 1 of the previous proposal, that
using Geant4 as a fast simulation is not achievable, we will instead use the existing CMS
FastSim application [26]. We have already obtained initial results from a technique called
Cold Diffusion [27] to learn transitions between any two types of images, using “average”
showers computed from the CaloChallenge datasets as a stand-in for actual FastSim. Some
deficits in this technique compared to standard diffusion may be overcome using mixture
density networks [28], which will be a priority item. This hybrid approach using FastSim
is synergistic with another project by the PI to refine high-level FastSim outputs using
ML, replacing coarse, manual correction factors [29]. By iteratively refining FastSim at
different processing stages (after the simulation step and at the end-stage analysis step),
each refinement task becomes progressively easier to learn, leading to even higher quality.
Further, CaloDiffusion should need fewer denoising steps for FastSim, speeding up inference.

The hybrid approach will be first explored with the existing CMS calorimeter systems and
applied to photons, electrons, and hadrons. However, the real motivation for ML-based fast
simulation in CMS is the HGCal, which is the primary driver of increased time to simulate
HL-LHC events. The HGCal has an extremely complicated geometry with hexagonal cells
of varying materials and sizes, which frustrates standard convolutional operators, such as
those used in CaloDiffusion. The learned mapping used for CaloChallenge Dataset 1 may
be extendable to this problem. Alternatively, graph convolutions may be used, with the
layer-by-layer conditioning approach from Ref. [30] to reduce memory usage.
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We anticipate integration of at least one approach, fully generative or hybrid, into CMSSW,
with SONIC employed to enable accelerated GPU inference anywhere, by the end of the
award period. This implies the availability of ML-based simulation to the CMS collaboration
by the end of Run 3, ensuring sufficient statistical precision to carry out any legacy analysis
using the entire LHC dataset and advance preparation for the Run 4 detector upgrades.
Amram is an ideal candidate to carry out this integration because of his background as Pixel
Offline Software Convener. Coupled with the PI’s experience as HCAL CMSSW Convener,
Upgrade Software Coordinator, and Deputy Release Manager, this team will bring high-
quality ML-based simulation to large-scale production and official usage. The CMS-specific
algorithm development and results will be published via the CMS ML Group (MLG).

Timeline & Milestones

Because Amram started in September 2022 while this renewal is submitted in May 2023, less
than a full year later, milestones for 15 subsequent months (5 quarters) are listed in Table 1
below. These deliverables build on the previous work discussed above.

Month Milestone Deliverables

3 First results

• Conference presentations of results
• Publication of CaloDiffusion algorithm
• Overall CaloChallenge publication

6 CaloDiffusion improvements
• Global performance
• Faster inference (distillation, latent diffu.)

9 Hybrid approach
• Cold Diffusion w/ Mixture Density Nets
• Adapt to CMS calorimeters, particle types

12 HGCal
• Convolutions in complicated geometry
• Validate generative and hybrid results

15 Implementation • CMSSW integration w/ SONIC
• Publication of CMS results via MLG

Table 1: Timeline of milestones and deliverables for the proposal.

Mentoring & Supervision

Many detector simulation and AI experts are resident at Fermilab or nearby institutions (Ar-
gonne, University of Chicago, etc.) to provide feedback and guidance. Fermilab hosts the
LHC Physics Center, through which we can collaborate with university students and post-
docs. Amram has already demonstrated his leadership capabilities by supervising a Fermilab
AI Associate, Ashia Lewis, who contributed to ML algorithm exploration for CaloDiffusion.
The Fermilab CMS group has established a highly successful postdoc mentoring program
that includes annual reports and regular communication with both a direct supervisor and a
mentor who looks out for the postdoc’s broader career interests. The CMS ML4Sim meeting,
run by the PI, provides opportunities to get feedback from the collaboration. Amram has
given and will continue to give conference presentations, as well as preparing publications.
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