
Deploying GPU algorithms through SONIC

Project goals

The ultimate goal of the project is to demonstrate at a sufficiently large scale the reconstruction 
algorithm workflow within CMSSW to be processed, where the client jobs are running on one 
site, while the Line Segment Tracking (LST) algorithm will be executed on GPUs on computing 
nodes at another site connected through SONIC (Services for Optimized Network Inference on 
Co-processors) framework.
Dr. Kelci Mohrman, the postdoc candidate for the R&D initiative project, will first work on 
integrating the LST workflow with SONIC framework within CMSSW. Dr. Mohrman will carry 
out deployment of the algorithm at small scale at one single site (i.e., UF T2) as a first milestone, 
then carry over to two sites (e.g., UF T2 and Purdue T2), and then scale up the test to a larger 
number of CPU and GPU nodes in various combinations and measure the performance of the 
throughput and CPU and GPU resource utilization. In particular, careful timing and resource 
utilization measurements will be performed in order to also provide a step towards measuring 
the GPU resource needs for the HL-LHC.

GPU algorithms and SONIC

The CMS computing model study shows that the projected required computing resources in 
Run 4 will exceed the computing resources of the budget. This is shown in the figure below [1].

The largest component of the computing resources is taken up by the reconstruction task of the 
CMS data processing [1].
There is various algorithm innovation work, including LST [2, 3], that aims to offload 
reconstruction tasks to GPU co-processors. However, even if the algorithm innovation is 
successful, how the reconstruction tasks that now demand GPU co-processors in each workflow 
will be deployed and processed is an equally important problem to be addressed.
SONIC is a project focused on running machine learning inference on co-processors situated in 
a different site but provided to the client as a service. In a recent study [4], it was shown that the 
network protocols set up through SONIC framework can successfully aid in processing machine 
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learning inference for the MiniAOD production task. This demonstration shows that SONIC is 
primed to try out reconstruction tasks, the largest portion of the computing tasks.
In light of this, I propose to demonstrate that the LST algorithm can be run as-a-service 
through SONIC and ultimately lay the groundwork of porting other reconstruction 
algorithms that use GPUs to a service through SONIC. If successful, the project will 
demonstrate that innovative algorithms developed to run on GPUs to address CPU timing 
resources can be deployed through SONIC and demonstrate that the HL-LHC operations will 
gain in efficiency of the GPUs that CMS collaboration purchases via through flexibility.

Line Segment Tracking

In HL-LHC, the CMS outer tracker will feature “pT modules” that are double-layered silicon 
detectors. The double-layer design allows for pair of hits in each layer to be correlated, 
providing a rough pT estimate on the particle that presumably created the hit signals. This 
opens up a good opportunity to utilize parallel processing architecture to correlate hits between 
the silicon doublet layers in parallel thus quickly filtering interesting hits first.
The LST algorithm performs such hit correlations in parallel on GPUs and creates Mini-Doublets, 
that consist of two hits. Subsequently, the pair of mini-doublets are linked to create line 
segments. Then pairs of line segments are considered to create good candidates of triplets and 
further quintuplets. An illustration of the steps are shown in the figure below.

LST in CMSSW

The algorithm has recently been integrated into CMSSW [3]. In CMS iterative tracking, there are 
more than ten seeds types. Two important seeds are the quadruplet and triplet seeds . These 1

two iteration seeds have been consumed by the LST and track candidates are produced.
When the LST algorithm produced track candidates performance was compared to that of the 
baseline default tracking algorithm with the two aforementioned seeds, the results show that 
efficiency is on par while the fake rate is much lower. The efficiency result is shown in the figure 
below, which can also be found in Ref. [3]. (cf. comparison is to be made between black and red 
results, to be close to apples-to-apples comparison)

 In CMS, they are referred to as initial and highPtTriplet seeds.1
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Tracking Efficiency with LST integration to CMSSW

Tracking efficiency from CMSSW tracking benchmark performance metric tool.

The black and red curves show the closest to fair comparison with generally good efficiency 
above targeted pT > 0.8 GeV


N.B. This plot is to demonstrate the on-going LST integration work CMSSW, it is not the final result and improvements 
to the performance will be made once full integration is done.
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Fake Rate with LST integration to CMSSW

Fake rate from CMSSW tracking benchmark performance metric tool.

The black and red curves show the closest to fair comparison with low fake rates for LST 
based tracking


N.B. This plot is to demonstrate the on-going LST integration work CMSSW, it is not the final result and improvements 
to the performance will be made once full integration is done.
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Also, purely outer tracker-based tracks that are pertinent to 
displaced tracks show efficiency far better than the full iterative 
tracking results. This can be seen in the figure on the left as well as 
in Ref. [3]. (cf. blue and black results in the figure on the left.) For 
tracks with high displaced vertex, the default tracking efficiency 
drops while the LST performs several factors higher in efficiency. 
The rest of the integration work is ongoing, and tuning and 
optimization will take place in the near future. 

Expected impact on the timing

As of yet, no comprehensive timing measurement has been carried out, and therefore, it is hard 
to estimate the final impact to the full reconstruction timing utilizing the LST. Despite being 
integrated into the CMSSW, the timing measurement cannot account for GPU usage properly. 
However, there are some numbers that gives an indication that with LST algorithm there are 
gains to be expected. Currently, in CMSSW 13.0.0 RelVal profile shows that the reconstruction 
step for Phase 2 takes 54 seconds on average per event. Among them 21 seconds are spent on 
tracking. If Phase 1 is taken to be as a guide, the outer-tracker only tracking is expected to take 
about the same as all pixel-based tracking (i.e. roughly half of all tracking). However, with the 
LST algorithm a relatively pure outer-tracker tracks have been created on GPU with an average 
of ~10 ms per event.
Also, the displaced tracking efficiency has greatly been improved over baseline tracking, as 
mentioned in the previous section, indicating that the LST algorithm is performing unique 
tracking tasks that the baseline tracking algorithm has not been performing. In other words, if 
the baseline tracking were to be reconfigured to also target the displaced tracks, the tracking 
timing would have been larger than the current average of 21 seconds. Therefore, LST is 
expected to at least do more with the same amount of resources.
Therefore, it will be important in this project to focus on proper timing results. Dr. Mohrman 
will pay close attention to measuring fair timing measurement and take a first step towards a 
benchmark standard for future GPU reconstruction algorithm development that will be 
integrated for HL-LHC.

Project Milestones

Milestone #1: (Month 1, 2)
The first milestone is to run the LST code on SONIC on local CPU nodes with another CPU 
node with a GPU and successfully obtain input and output of track candidates through SONIC. 
Towards the first milestone, the first step is to adopt the LST code for SONIC. There are minor 
code changes to handle sending of the inputs and receiving of the outputs through the Triton 
server that will be set up on the GPU nodes. The postdoc will develop the code in the LST 
package to handle inputs and outputs with SONIC. The UF T2 Operations support computing 
professionals who have root access who can help us with the process if any root privilege is 
required to set up Triton servers. However, it is currently foreseen to not be necessary or be 
minimal.
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Displaced vertex tracking of LST in CMSSW

N.B. This plot is to demonstrate the on-going LST integration work CMSSW, it is not the final result and improvements 
to the performance will be made once full integration is done.

Tracking efficiency from CMSSW tracking 
benchmark performance metric tool.


LST at high rvertex shows significantly 
better tracking efficiency when compared 
to even the baseline tracking including all 
iterations that includes OT-only seeds.



Milestone #2: (Month 3 - 5)
The second milestone is to achieve running reconstruction workflow where the client CPU jobs 
are running the workflow on one site, and the GPU server that serves the LST tracks are 
running the LST algorithm on another site. The plan is to work with Purdue T2 as the client, 
and UF T2 GPUs as the service servers. This milestone will demonstrate a step that is close to a 
realistic scenario for HL-LHC, and will be a major milestone, albeit only achieved on a small 
scale at first. The postdoc will also focus on producing timing and throughput results during 
this phase of the work.
Milestone #3: (Month 6 - 8)
The next step will be focused on scaling it up to a larger number and studying the impact on the 
throughput as a function of the number of GPUs. The first goal would be to start applying to a 
few clients with one GPUs and slowly scaling up to O(10) clients to few GPUs. There may be 
various issues with having multiple client jobs sending LST algorithm tasks to the same GPU. 
Various debugging is likely necessary. The postdoc will again focus on the timing and 
throughput measurements.
Milestone #4: (Month 9 - 10)
The last step of the milestone is to scale up the result to a much larger size with O(100-1000) 
clients. The postdoc will study how things scale with CPU-to-GPU ratios and find an optimal 
number of GPU resources for maximum throughput.
Milestone #5: (Month 11 - 12)
In this phase, the postdoc will try to reach out to other GPU reconstruction algorithm 
developers to see if synergies can be made. For example, there is a vertexing algorithm that runs 
on GPU that could be integrated into the work. This could lay a groundwork for other 
algorithms to also utilize SONIC to deploy their GPU reconstruction algorithms.

Dr. Kelci Mohrman

Kelci Mohrman graduated from the University of Notre Dame in 2023 and has joined PI 
Chang’s group starting April of 2023. Her thesis topic was “Search for new physics impacting 
associated top production in multilepton final states using the framework of effective field 
theory,” for which she earned the Department of Physics and Astronomy  Research & 
Dissertation Award from the University of Notre Dame. 
Dr. Mohrman has extensive experience in dealing with large-scale computing and deploying 
software workflow over a large number of computing resources. She has collaborated with the 
University of Notre Dame’s Cooperative Computing Lab (CCL) in the past, focusing on large-
scale parallel computing for CMS analysis and workflows, and has made an IEEE publication in 
the past [5, 6]. Her skillsets and insights in large-scale computing will be useful for this project. 
For her thesis analysis, a large number of signal events had to be generated. Dr. Mohrman has 
run millions of CMSSW tasks extensively through workflow management tools from CCL 
utilizing O(10k) cores opportunistically. Her experience in handling a large amount of CMSSW 
tasks will be useful for this project.
Dr. Mohrman has also demonstrated analytical skills in investigating a complex piece of code. 
Dr. Mohrman studied how false minima in likelihood fits of the HiggsCombine tool could affect 
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the fits and developed an approach to navigate around the false minima and produced a 
solution and contributed by adding a feature to the HiggsCombine tool, which in the near 
future will be merged to the tool [7].
Since the start of her postdoc appointment (mid-April 2023) Dr. Mohrman has already 
demonstrated versatility in applying her insights and skillset to the University of Florida T2 
computing center and quickly made progress. She has already learned the LST CMSSW 
workflow that utilizes the GPU and has started to reproduce the results presented in [3]. PI 
Chang and collaborators can provide technical help on the LST algorithm details and bring her 
up to speed on the algorithm details. Dr. Mohrman has also ported over the scaling up the 
coffea analysis framework workflow setup in Notre Dame T3 center utilizing workqueue 
software from CCL to the University of Florida T2. In the process have already been engaged 
closely with the computing professionals at UF T2 and have demonstrated an excellent 
understanding of the computing infrastructure at UF T2 and the Research Computing of UF in 
general.
Dr Mohrman’s past accomplishments prove the competency and expertise necessary for the 
project’s success.
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